Isolation and Structure of Hemibastadinols 1-3 from the Papua New Guinea Marine Sponge Ianthella basta¹

George R. Pettit,^{*,†} Mark S. Butler,[†] Michael D. Williams,[†] Melanie J. Filiatrault,[‡] and Robin K. Pettit[‡]

Cancer Research Institute and Department of Chemistry, Arizona State University, Tempe, Arizona 85287-1604, and Department of Biology, Western Oregon State College, Monmouth, Oregon 97361

Received February 19, 1996[®]

Further investigation of the Bismarck Archipelago (Papua New Guinea) marine sponge Ianthella basta for biologically active constituents has led to the isolation of hemibastadins 1 (2), 2 (3), and 3 (4) and the new brominated tyrosine derivatives hemibastadinols 1-3 (9, 13, and 14). Isolation and structure elucidation of the monomethyl ether derivatives (7 and 8) of hemibastadins 1 and 2 and the 3-bromotyramine amide of oxalic acid amide (1a) concluded our chemical investigation of *I. basta*. The hemibastadins and hemibastadinols represent important biosynthetic links to a series of bromotyrosine tetramers collectively known as the bastadins. The antimicrobial activity of the bastadins, hemibastadins, and hemibastadinols is summarized.

While ocean water is universally known for its chloride ion content (~ 0.5 M), it is also an abundant source of bromide (~1 mM) and to a lesser extent iodide $(\sim 1 \ \mu M)$ ² An important consequence of halogen ion availability has been the effective utilization of halogenation reactions by various marine organisms in their evolutionary biosyntheses of defensive and other necessary constituents.^{3,4} Illustrative are the tyrosine bromination products characteristic of marine Porifera in the Order Verongida⁵⁻¹⁸ and certain marine tunicates.19,20

In 1980-83 we began evaluating for antineoplastic constituents specimens of the Verongida species Ianthella basta (Pallas, 1776) (also known as Ianthella ardis, Aiolochioia crossa, and Pseudoceratina crossia)⁵ collected in Papua New Guinea. Subsequently, we isolated the acyclic and cyclic series of bastadins 1-8, 10, and 12 derived from four units of a brominated tyrosine.²¹ Presently, 18⁶ bastadins have been isolated from I. basta and related sponges. The present investigation of I. basta was focused on uncovering new biologically active constituents of this Western Pacific (Bismarck Archipelago) sponge employing minor fractions from a 1983 scaleup (160 kg wet weight) collection. The current study resulted in the isolation of eight new brominated tyrosine dimers and the 3-bromotyramine amide of oxalic acid amide (1a).

Results and Discussion

Amide 1a was isolated as an amorphous solid. The molecular formula C10H11BrN2O3, consistent with six unsaturation units, was determined by accurate mass measurement of the electron impact (EI) molecular ion peak cluster at m/z 286/288. Analysis of the ¹H- and ¹³C-NMR spectra (pyridine- d_5 and again in CD₃OD) indicated the presence of a 1,2,4-trisubstituted aromatic ring and a 3-bromotyramine partial structure. The presence of phenol and bromo groups in the aromatic ring was supported by characteristic mass spectral fragmentation patterns. The remaining C₂H₂NO₂ unit

was in turn shown to be composed of an NH₂ unit (¹H NMR, δ 9.07, 2H, br s) and two amide carbonyls (¹³C NMR, 164.0 and 161.8 ppm), which also accounted for the two remaining units of unsaturation. Further support for the amide carbonyls was provided by strong absorption at v_{max} 1651 cm⁻¹ in the IR spectrum. Therefore, the C₂H₂NO₂ portion was assigned as CO-CONH₂. The carbon at C-1' was assigned to the 161.8 ppm signal on the basis of an HMBC correlation from H-8. Additional evidence for the structure of the amide 1a resulted from the preparation of a monoacetate derivative 1b upon treatment with acetic anhydridepyridine.

Hemibastadin 1 (2) was found to correspond to the molecular formula C₁₇H₁₆Br₂N₂O₄ consistent with 10 unsaturation units and was established by accurate mass measurement of the molecular ion peak cluster

^{*} To whom correspondence should be addressed.

Arizona State University.

 [‡] Western Oregon State College.
[®] Abstract published in Advance ACS Abstracts, September 1, 1996.

(m/z 470/472/474) in the EI mass spectrum. The molecular formula was approximately half that of bastadin 1 ($C_{34}H_{30}Br_4N_4O_8$), which suggested a "hemibastadin"type structure that was deduced as follows. Examination of the ¹H and ¹³C NMR spectra of amide 2 followed by 2D NMR studies employing COSY, HMQC, and HMBC techniques led to the 2-bromo-4-alkylphenol system of amide 1a. The subunits formed from C-1 to NH-9 and from C-1' to C-7' accounted for eight of the 10 unsaturation values and were consistent with the hypothesis that amide 2 represented a bastadin subunit. The two degrees of unsaturation remaining were assigned as amide (165.8 ppm; IR, ν_{max} 1659 cm⁻¹) and oxime groups (153.3 ppm). An HMBC correlation from the C-8 methylene proton resonance (δ 3.38) to the amide carbon allowed the placement of the amide at C-9'. Correlations from the C-7' methylene proton resonance (δ 3.77) to both the amide and oxime carbons allowed positioning of the oxime at C-8'. The oxime was assigned an E geometry on the basis of the ^{13}C NMR chemical shift of C-7' (28.7 ppm).¹⁸ Methylation of hemibastadin 1 (2) with CH_3I/K_2CO_3 in DMF gave trimethyl ether derivative **6a** identical by ¹H NMR with that previously reported¹² for the methylation product of the otherwise uncharacterized hemibastadin 1. Thus, hemibastadin 1 was assigned structure 2.

Hemibastadins 2 (3) and 3 (4) were isolated as a mixture (3:1) that resisted separation by Sephadex LH-20 partition chromatography or normal-phase HPLC using a variety of solvent systems. The mixture was separated by reversed-phase HPLC using 2:3 CH₃CN- H_2O as eluent. After purification, the quantities of the isolates proved too small for decisive structural studies, and consequently, the mixture was employed for this purpose. Examination of the ¹H NMR spectrum of the mixture in CD₃OD indicated that both contained one 1.2.4.6-tetrasubstituted aromatic ring (major: δ 7.38, 2H, s, and minor: δ 7.31, 2H, s), one 1,2,4-trisubstituted aromatic ring (major: δ 7.30, 1H, d, J = 2.0 Hz; 6.96, 1H, dd, J = 2.0, 8.3 Hz; 6.78, 1H, d, J = 8.3 Hz, and minor: δ 7.36, 1 H, d, J = 2.0 Hz; 7.04, 1H, dd, J = 2.0, 8.3 Hz; 6.76, 1H, d, J = 8.3 Hz), a methylene group (major and minor: δ 3.77, s), and a CH_2CH_2 group (major and minor: δ 3.39, t, J = 7.3 Hz; 2.68, t, J = 7.3Hz). From the preceeding evidence it seemed likely that amides 3 and 4 were isomers with one more aromatic bromine atom than hemibastadin 1 (2). This was confirmed by the single mass spectral ion peak cluster at m/z 548/550/552/554. The latter was shown by highresolution EI mass measurement to correspond to C₁₇H₁₆Br₃N₂O₄. Comparison of the ¹H- and ¹³C-NMR data exhibited by amides **3** and **4** with those found for hemibastadin 1 (2) indicated that the 1,2,4,6-tetrasubstituted aromatic ring was attached to the methylene group in the major isomer and to the CH₂CH₂ group in the minor isomer. The ¹³C NMR chemical shifts for C-7' of amides 3 (28.3 ppm) and 4 (28.6 ppm) were consistent with E oxime geometries.¹⁸ Methylation of amides **3** and 4 with CH₃I/K₂CO₃ in DMF gave a mixture of the trimethyl ethers 5 and 6b, which also resisted separation. Comparison of the ¹H NMR data arising from the tetramethyl ether derivative of the major isomer 5 compared with those previously reported for permethylhemibastadin 2 (5)¹² further supported the MS and NMR conclusions and allowed hemibastadins 2 and 3 to be assigned the structures **3** and **4**, respectively.

A molecular formula of $C_{18}H_{18}Br_2N_2O_4$ (determined by EI mass measurement of the molecular ion peak cluster at m/z 485/487/489) was found for 1'-methoxyhemibastadin 1 (7). Comparison of the ¹H- and ¹³C-NMR data of amide 7 with those for hemibastadin 1 (2) suggested that the methoxyl group resided at C-1', which was confirmed by an HMBC correlation from the methoxyl proton resonance to C-1' (155.9 ppm). The ¹³C-NMR chemical shift value for C-7' of 28.7 ppm was consistent with an *E* oxime,¹⁸ and thus, amide 7 was shown to be the 1'-methoxy derivative of hemibastadin 1.

Structural determination of 1'-methoxyhemibastadin 2 (**8**) began with the assignment of molecular formula $C_{18}H_{17}Br_3N_2O_4$ using the ion peak cluster at m/z 568/ 570/572/574, as noted for amide **7**. The elemental composition suggested that phenol **8** was closely related to 1'-methoxyhemibastadin 1 (**7**). Examination of the ¹H- and COSY-NMR spectra of phenol **8** combined with the NOE and ¹³C-NMR results confirmed the placement of the tetrasubstituted ring. Comparison of the ¹H- and ¹³C-NMR results associated with the 1,2,4-trisubstituted aromatic ring with those for hemibastadin 1 (**2**) suggested that the methoxyl group was attached to C-1' and not C-1. An *E* geometry was assigned¹⁸ to the oxime (C-7': 28.8 ppm), and phenol **8** was thereby shown to be a 1'-methoxy derivative of hemibastadin 2.

Hemibastadinol 1 (9) was isolated as an optically active solid. Mass spectral evidence supported a molecular formula $C_{17}H_{16}Br_2NO_4$ consistent with nine unsaturation units. Analyses of the ¹H- and COSY-NMR spectra of amide 9 (in CD₃OD) indicated the presence of two 1-hydroxy-2-bromo-4-alkyl aromatic rings. One of the phenol rings was found to be attached to a CH₂CH₂NH group. The other 1-hydroxy-2-bromo-4-alkyl aromatic ring was attached to a methylene that was further coupled to an oxymethine group. Thus, units C-1 to NH-9 and C-1' to C-8' accounted for eight of the nine units of unsaturation present.

The remaining unit of unsaturation was assigned to

18 and 20

Figure 1. NMR $\Delta \delta$ values for the (*S*)- and (*R*)-MPA derivatives of 1,1'-dimethoxyhemibastadinols 1 (**10**), 2 (**15**), and 3 (**16**).

an amide. The position of the amide carbonyl at C-9' was supported by HMBC correlations from H-7a', H-7b', H-8', H-7a, and H-7b. Therefore, hemibastadinol 1 (9) was shown to be a C-8' hydroxy derivative of hemibastadin 1 (2).

The absolute configuration of the secondary alcohol at C-8' in hemibastadinol 1 (9) was investigated using Trost's modification of the Mosher method^{22,23} with the methyl ether derivative **10** formed by reaction of diphenol **9** with ethereal diazomethane. The (*S*)- and (*R*)- α methoxyphenylacetyl (MPA) derivatives **11** and **12** were prepared by reaction of alcohol **10** with the appropriate epimer of MPA and DCCI/DMAP in dichloromethane. Analysis of the COSY spectra of esters **11** and **12** allowed all the ¹H-NMR resonances to be assigned. Negative $\Delta\delta$ values ($\Delta\delta = \delta_S - \delta_R$) for H-3 through NH-9 and positive $\Delta\delta$ values for 1'-OCH₃ through H-7a/H-7b (Figure 1) pointed to a C-8' (*S*) configuration for the secondary alcohol.

Hemibastadinols 2 (13) and 3 (14) were isolated as an optically active oily mixture (19:1) that effectively resisted separation. Analysis of the ¹H-NMR spectrum (CD₃OD) of the mixture suggested that phenols 13 and 14 were the C-8' hydroxy derivatives of hemibastadins 2 (3) and 3 (4). A single molecular ion peak cluster (by EI) at m/z 535/537/539/541, which corresponded to C₁₇H₁₆Br₃NO₄, supported this hypothesis. Comparison of the ¹H- and ¹³C-NMR data exhibited by phenols 13 and 14 with those for hemibastadins 1–3 (2–4) and hemibastadinol 1 (9) suggested that the major isomer 13 contained the 2-bromo-4-alkyl aromatic ring attached to the CH₂CH₂NH group, whereas in the minor isomer the 2,6-dibromo-4-alkyl aromatic ring was attached to the CH₂CH₂NH group. These results allowed structures **13** and **14** to be assigned to hemibastadinols 2 and 3, respectively, and those conclusions were further confirmed by the results of permethylation. When phenols **13** and **14** were methylated using ethereal diazomethane the result was a quantitative yield of methyl ethers **15** and **16**. Application of the Mosher–Trost method to the (*S*)-(**17** and **18**) and (*R*)-(**19** and **20**) MPA derivatives prepared from the mixture of hemibastadinols 2 and 3 methyl ethers gave evidence that both corresponded to the C-8' (*S*) absolute configuration (Figure 1).

The isolation of hemibastadins 1-3 and hemibastadinols 1-3 from *I. basta* provides some further insight into biosynthetic pathways of the cyclic bastadins. For example, the C-8' alcohol group of hemibastadinols 1-3suggests that hydroxylation at C-8' may be a direct precursor (or biosynthetic byproduct) of the bastadin oxime group and that formation of amide **1a** may represent an early event in the overall biosynthetic process. Interestingly, the oxalyl diamide **1a** seems related to the marine sponge constituent igzamide **(21)**.²⁴

While the hemibastadins did not display significant activity against the P388 lymphocytic leukemia cell line, they did exhibit promising antimicrobial properties in keeping with the known ability of certain brominated tyrosine derivatives to have antiinflammatory and antimicrobial activities. Bastadins 4, 8, and 9 (Guam *I. basta*) proved to be antiinflammatory in the mouse ear assay.¹⁴ Bastadin 13 (Australian I. basta) inhibited growth of the Gram-positive bacterium Bacillus subti*lis.*⁹ Bastadins 1–7 (Australian *I. basta*) are apparently inhibitory for Gram-positive bacteria, although data were not provided.²⁵ We evaluated the ability of amide 1a, bastadins 1-6, the hemibastadins, and hemibastadinols to inhibit growth of Gram-negative bacteria, Gram-positive bacteria, and two fungi (Table 1). Except for bastadin 6, all of these compounds inhibited growth of the Gram-negative pathogen Neisseria gonorrhoeae. Most of the compounds also inhibited growth of the Gram-positive opportunists Enterococcus faecalis and Staphylococcus aureus. At up to 100 μ g/disk, these compounds exhibited no antimicrobial activity against the Gram-negative bacterium *Escherichia coli* or the fungi Candida albicans and Cryptococcus neoformans.

Experimental Section

General Experimental Procedures. Analytical reversed-phase HPLC was performed using a Merck LiChrospher 100 RP-18 column (250 × 4.6 mm, 5 μ m), controlled by an analytical Gilson HPLC system (802B, 811, 2 × 302) fitted with a Rheodyne injector valve (7125 with 20- μ L loop), Apple IIe gradient manager (VI.2 Gilson), UV detector, and data system (Hewlett-Packard 1040A) at 276 nm. All other general experimental techniques and instruments were as previously described.²¹

Table 1. Minimum Inhibitory Concentrations (ug/Disk) of Bromotyrosine Derivatives for Bacteria

compd	E. coli	N. gonorrhoeae	E. faecalis	S. aureus
bastadin 1	а	50-100	12.5 - 25	6.25 - 12.5
bastadin 2		50-100	50-100	6.25 - 12.5
bastadin 3		0.78 - 1.56	3.12 - 6.25	1.56 - 3.12
bastadin 4		12.5 - 25	50-100	12.5 - 25
bastadin 5		50-100	50-100	12.5 - 25
bastadin 6			12.5 - 25	6.25 - 12.5
amide 1a		50-10		
hemibastadin 1		12.5 - 25.0	50-100	1.56 - 3.12
1'-(methyloxy)hemibastadin 7		6.25 - 12.5		6.25 - 12.5
hemibastadin 2		3.12 - 6.25		3.12 - 6.25
hemibastadins 2 and 3		6.25 - 12.5	50-100	6.25 - 12.5
hemibastadinol 1		50-100		
hemibastadinols 2 and 3		50-100		

^{*a*} No inhibition at 100 μ g/disk.

Animal Collection, Extraction, and Solvent Partitioning. The marine sponge *I. basta* (Pallas, 1776) in the Class Demospongiae (Order Verongia, Family Ianthellida) was collected (160-kg wet weight) in the Bismarck Archipelago (Northern Papua New Guinea). Those details including the extraction and solvent partitioning have been summarized as part of an initial study.²¹

Isolation Sequence. The murine P388 lymphocytic leukemia cell line active fraction (314 g) obtained from the solvent-partitioning procedure²¹ was chromatographed on a column of Sephadex LH-20 with CH₃OH as eluent to afford the P388 active fraction (41 g). An aliquot (29 g) of the P388 active fraction was further separated on Sephadex LH-20 using methanol as eluent to give three major fractions, A, B, and a third containing 13.3 g of bastadins as a mixture.

Fraction A (1.16 g) was partitioned with Sephadex LH-20 using 2:1:1 hexane:toluene:methanol as eluent and afforded two P388-active fractions. The first (153 mg) was chromatographed initially over silica gel using 97:3 CH₂Cl₂:CH₃OH and then with normal-phase HPLC (98.5:1.5 CH₂Cl₂:CH₃OH, 1.5 mL/min) to give 1'-methoxyhemibastadin 1 (7, 12.9 mg). The second active fraction (144 mg) was separated over silica gel using 3:7 hexane:ethyl acetate to give two additional active fractions. These were further separated using normal-phase HPLC (96:4 CH₂Cl₂:2-propanol, 2.0 mL/min). The first fraction gave amide **1a** (38.3 mg) and a mixture of hemibastadinols 2 and 3 (**13** and **14**, 12.8 mg). The latter afforded 19.9 mg of hemibastadinol 1 (**9**).

Fraction B (5.85 g) was separated in a similar manner using Sephadex LH-20 eluted with 2:1:1 hexane:toluene: methanol to give three initial P388-active fractions. The first (95.2 mg) was separated on a column of silica gel using 96:4 CH₂Cl₂:CH₃OH and then again by column chromatography using silica gel with 13:7 hexane:ethyl acetate as eluent and finally using normal-phase HPLC (7:3 hexane:ethyl acetate, 2.0 mL/min) to give 7.1 mg of 1'-methoxyhemibastadin 2 (8) and an additional 8.7 mg of 1'-methoxyhemibastadin 1 (7). The second active fraction (57.6 mg) furnished an additional 8.0 mg of amide 1a using column chromatography on silica gel with 19:1 CH₂Cl₂:2-propanol followed by normal-phase HPLC (7:3 hexane:ethyl acetate, 2.0 mL/min). The third active fraction (262.2 mg) was also separated by silica gel column chromatography using 13:7 to 1:1 hexane: ethyl acetate to give two new active fractions. The first of these (35.5 mg) was subjected to normal-phase HPLC (13:7 hexane:ethyl acetate, 2.0 mL/min) to give a mixture of hemibastadins 2 and 3 (**3** and **4**, 29.5 mg). The second (121.7 mg) furnished 77.4 mg of hemibastadin 1 (**2**) following normal-phase HPLC using 6:4 hexane:ethyl acetate (1.8 mL/min). The remaining sample (12 g) of the original P388-active fraction was separated in an analogous way to give in overall yields hemibastadin 1 (**2**) (106 mg, 5.2×10^{-5} %), hemibastadins 2 (**3**) and 3 (**4**) (mixture, 46.5 mg, 2.2×10^{-5} %), hemibastadinols 2 and 3 (**13** and **14**) (mixture, 15.0 mg, 7.4 × 10^{-6} %), 1'-methoxyhemibastadin 1 (**7**) (35.4 mg, 1.7 × 10^{-5} %), 1'-methoxyhemibastadin 2 (**8**) (7.1 mg, 3.5 × 10^{-6} %) and the 3-bromotyramine amide of oxalic acid amide (**1a**) (65.3 mg, 3.2×10^{-5} %).

3-Bromotyramine amide of oxalic acid amide (1a): colorless, amorphous solid; UV (CH₃OH) λ_{max} (log ϵ) 212 (3.89), 281 (3.14) nm; IR (NaCl, film) ν_{max} 3387, 3310, 1651 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.72 $(2H, t, J = 7.4 Hz, H_2-7), 3.41 (2H, t, J = 7.4 Hz, H_2-8),$ 6.81 (1H, d, J = 8.2 Hz, H-6), 7.01 (1H, dd, J = 2.0, 8.2 Hz, H-5), 7.33 (1H, d, J = 2.0 Hz, H-3); ¹³C NMR (100 MHz, CD₃OD) 35.0 (C-7), 42.2 (C-8), 110.8 (C-2), 117.3 (C-6), 130.0 (C-5), 132.8 (C-4), 134.3 (C-3), 154.0 (C-1), 161.8 (C-1'), 164.0 ppm (C-2'); EI mass spectrum m/z (rel int) [M⁺] 288 (6), 286 (6), 200 (99), 199 (13), 198 (100), 187 (32), 185 (32), 120 (20), 101 (10), 77 (11); HREIMS [M⁺] 287.9935 (C₁₀H₁₁⁸¹BrN₂O₃, calcd 287.9933), 285.9948 (C₁₀H₁₁⁷⁹BrN₂O₃, calcd 285.9953), mass ions 199.9666 (C₈H₇⁸¹BrO calcd 199.9660), 197.9683 (C₈H₇⁷⁹BrO, calcd 197.9680), 186.9593 (C₇H₆⁸¹BrO, calcd 186.9582), 184.9615 (C7H679BrO, calcd 184.9602), 120.0573 (C₈H₈O, calcd 120.0575), 101.0353 (C₃H₅N₂O₂, calcd 101.0351).

The phenol (1a, 12.7 mg) was dissolved in pyridine (1 mL) and Ac₂O (0.5 mL), and the solution was stirred at room temperature for 24 h. The reaction mixture was poured into water (50 mL) and extracted with Et₂O (2 \times 50 mL). The combined ethereal extract was washed with water (2 \times 50 mL) and dried (sodium sulfate) and solvent removed in vacuo to yield the acetate 1b (14.5 mg, 99%) as an amorphous powder: UV (CH₂Cl₂) λ_{max} $(\log \epsilon)$ 230 (3.58), 276 (3.14), 286 (3.06) nm; IR (NaCl, film) $\nu_{\rm max}$ 3391, 3312, 1767, 1651, 1599, 1547, 1416, 1229, 1213, 1192 cm⁻¹; ¹H NMR (500 MHz, pyridine d_5) δ 2.26 (3H, s, 1-OCOCH₃), 2.88 (2H, t, J = 6.0 Hz, H_2 -7), 3.66 (2H, dt, J = 6.0, 6.0 Hz, H_2 -8), H-3, H-5, H-6 obscured by solvent, 9.02 (2H, br s, 2'-NH₂), 9.63 (1H, br t, J = 6.0 Hz, NH-9); ¹³C NMR (125 MHz, pyridined₅) 20.5 (1-OCOCH₃), 34.9 (C-9), 41.1 (C-8), 116.6 (C-2), 124.3 (C-6), 129.5 (C-5), 133.7 (C-3), 139.5 (C-4), 147.4 (C-1), 161.7 (C-1'), 163.5 (C-2'), 168.7 ppm (1-OCOCH₃); EI mass spectrum m/z (rel int) [M⁺] 330 (1), 328 (1), 288 (22), 286 (23), 201 (13), 200 (96), 199 (15), 198 (100), 187 (22), 186 (23), 120 (11), 101 (9), 91 (7), 77 (6); HREIMS [M⁺] 328.0067 (C₁₂H₁₃⁷⁹BrN₂O₄ calcd 328.0059), 330.0041 (C₁₂H₁₃⁸¹BrN₂O₄ calcd 330.0039).

Hemibastadin 1 (2): colorless oil; UV (CH₃OH) λ_{max} (log ϵ) 210 (4.53), 281 (3.88) nm; IR (NaCl, film) v_{max} 3383, 3000, 1659, 1537, 1495, 1422, 1283, 1256 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 2.67 (2H, t, J = 7.3 Hz, H_2 -7), 3.38 (2H, t, J = 7.3 Hz, H_2 -8), 3.77 (2H, s, H_2 -7'), 6.76 (1H, d, J = 8.3 Hz, H-6'), 6.77 (1H, d, J = 8.3 Hz, H-6), 6.95 (1H, dd, J = 2.0, 8.3 Hz, H-5), 7.03 (1H, dd, J = 2.0, 8.3 Hz, H-5'), 7.29 (1H, d, J = 2.0 Hz, H-3), 7.35 (1H, d, J = 2.0 Hz, H-3'); ¹H NMR (300 MHz, pyridine- d_5) δ 2.87 (2H, t, J = 6.5 Hz, H₂-7), 3.67 (2H, dt, J = 6.5, 6.5 Hz, H₂-8), 4.32 (2H, s, H₂-7'), 7.05 (2H, br s, H-5, H-6), 7.12 (1H, d, J = 8.3 Hz, H-6'), 7.53 (1H, s, H-3), 7.55 (1H, dd, J = 2.1, 8.3 Hz, H-5'), 8.06 (1H, d, J = 2.1 Hz, H-3'), 8.60 (1H, t, J = 6.5 Hz, NH-9); ¹³C NMR (100 MHz, CD₃OD) 28.7 (C-7'), 35.3 (C-7), 42.0 (C-8), 110.7, 110.5 (C-2, C-2'), 117.3, 117.1 (C-6, C-6'), 130.1, 130.4 (C-5, C-5'), 130.7 (C-4'), 133.1 (C-4), 134.3, 134.5 (C-3, C-3'), 153.3 (C-8'), 153.9, 153.8 (C-1, C-1'), 165.8 ppm (C-9'); ¹³C NMR (125 MHz, pyridine-d₅) 28.9 (C-7'), 35.0 (C-7), 41.5 (C-8), 111.0, 111.1 (C-2, C-2'), 117.2, 117.2 (C-6, C-6'), 129.6, 130.3 (C-5, C-5'), 130.4 (C-4'), 132.2 (C-4), 133.8, 134.5 (C-3, C-3'), 153.1 (C-8'), 154.1, 154.2 (C-1, C-1'), 164.6 ppm (C-9'); EI mass spectrum *m*/*z* (rel int) [M⁺] 474 (10), 472 (19), 470 (10), 458 (7), 456 (16), 454 (7), 256 (9), 214 (23), 213 (91), 212 (33), 211 (84), 201 (26), 200 (97), 199 (27), 198 (98), 188 (13), 187 (95), 186 (15), 185 (100), 132 (43), 120 (31), 77 (42); HREIMS [M⁺] 469.9437 (C₁₇H₁₆⁸¹Br₂N₂O₄, calcd $473.9430, 471.9445 \, (C_{17} H_{16}{}^{79} Br^{81} Br N_2 O_4, calcd 471.9457),$ 469.9467 (C₁₇H₁₆⁷⁹Br₂N₂O₄, calcd 473.9477).

Hemibastadin 2 (3) and Hemibastadin 3 (4). Mixture: IR (NaCl, film) ν_{max} 3393, 1657, 1476 cm⁻¹; EI mass spectrum m/z (rel int) [M⁺] 554 (4), 552 (14), 550 (14), 548 (5), 293 (33), 291 (67), 289 (34), 267 (24), 265 (50), 263 (24), 213 (41), 212 (51), 211 (24), 198 (76), 187 (91), 185 (100), 132 (28), 120 (25), 77 (49); HREIMS $[M^+]$ 553.8549 (C₁₇H₁₅⁸¹Br₃N₂O₄ calcd 553.8522), 551.8536 (C17H1579Br81Br2N2O4, calcd 551.8542), 549.8562 (C₁₇H₁₅⁷⁹Br₂⁸¹BrN₂O₄, calcd 549.8562), 547.8570 (C₁₇H₁₅-⁷⁹Br₃N₂O₄, calcd 547.8582). Hemibastadin 2 (**3**): ¹H NMR (500 MHz, CD₃OD) δ 2.68 (2H, t, J = 7.3 Hz, H₂-7), 3.39 (2H, t, J = 7.3 Hz, H₂-8), 3.77 (2H, s, H₂-7'), 6.78 (1H, d, J = 8.3 Hz, H-6), 6.96 (1H, dd, J = 2.0, 8.3Hz, H-5), 7.30 (1H, d, J = 2.0 Hz, H-3), 7.38 (2H, s, H-3', H-5'); ¹³C NMR (75 MHz, CD₃OD) 28.3 (C-7'), 35.1 (C-7), 42.0 (C-8), 110.9, 112.2 (C-2, C-2'), 117.5, 112.2 (C-6, C-6'), 130.2, 134.2 (C-5, C-5'), 132.6 (C-4'), 133.3 (C-4), 134.5, 134.2 (C-3, C-3'), 152.9 (C-8'), 154.1, 151.0 (C-1, C-1'), 165.9 ppm (C-9'); hemibastadin 3 (4): ¹H NMR $(500 \text{ MHz}, \text{CD}_3\text{OD}) \delta 2.68 (2\text{H}, \text{t}, J = 7.3 \text{ Hz}, \text{H}_2\text{-}7), 3.39$ $(2H, t, J = 7.3 Hz, H_2-8), 3.77 (2H, s, H_2-7'), 6.76 (1H, s)$ d, J = 8.3 Hz, H-6'), 7.04 (1H, dd, J = 2.0, 8.3 Hz, H-5'), 7.31 (2H, s, H-3, H-5), 7.36 (1H, d, J = 2.0 Hz, H-3'); ¹³C NMR (75 MHz, CD₃OD) 28.6 (C-7'), 34.8 (C-7), 41.7 (C-8), 112.3, 110.7 (C-2, C-2'), 112.3, 117.3 (C-6, C-6'), 133.9, 130.5 (C-5, C-5'), 130.9 (C-4'), 135.0 (C-4), 133.9, 134.8 (C-3, C-3'), 153.5 (C-8'), 154.0, 151.0 (C-1, C-1'), 166.2 ppm (C-9').

1'-Methoxyhemibastadin 1 (7): colorless oil; UV

 $(CH_3OH) \lambda_{max} (\log \epsilon) 213 (4.53), 280 (3.87) nm; IR (NaCl,$ film) v_{max} 3385, 3283, 1657, 1537, 1497, 1283, 1256 cm⁻¹; ¹H NMR (400 MHz, CD₃OD) δ 2.67 (2H, t, J = 7.2 Hz, H_2 -7), 3.40 (2H, t, J = 7.2 Hz, H_2 -8), 3.80 (2H, s, H_2 -7'), $3.82 (3H, s, 1'-OCH_3), 6.77 (1H, d, J = 8.3 Hz, H-6), 6.89$ (1H, d, J = 8.4 Hz, H-6'), 6.95 (1H, dd, J = 2.0, 8.3 Hz, H-5), 7.14 (1H, dd, J = 2.3, 8.4 Hz, H-5'), 7.29 (1H, d, J = 2.0 Hz, H-3), 7.43 (1H, d, J = 2.3 Hz, H-3'); ¹³C NMR (100 MHz, CD₃OD) 28.7 (C-7'), 35.3 (C-7), 41.9 (C-8), 56.7 (1'-OCH₃), 110.7 (C-2), 112.2 (C-2'), 113.2 (C-6'), 117.2 (C-6), 130.0 (C-5), 130.4 (C-5'), 131.6 (C-4'), 133.0 (C-4), 134.2 (C-3), 134.8 (C-3'), 153.1 (C-8'), 153.8 (C-1), 155.9 (C-1'), 165.7 ppm (C-9'); EI mass spectrum m/z(rel int) [M⁺] 488 (6), 486 (13), 484 (6), 472 (6), 470 (11), 468 (6), 288 (12), 286 (12), 228 (21), 227 (97), 226 (20), 225 (100), 201 (38), 200 (30), 199 (38), 198 (27), 187 (50), 185 (53), 146 (52), 120 (18), 103 (33), 77 (38); HREIMS $[M^+]$ 487.9615 (C₁₈H₁₈⁸¹Br₂N₂O₄, calcd 487.9593), 485.9609 (C₁₈H₁₈⁷⁹Br⁸¹BrN₂O₄, calcd 485.9614), 483.9633 (C₁₈H₁₈⁷⁹Br₂N₂O₄, calcd 485.9634).

1'-Methoxyhemibastadin 2 (8): colorless solid; UV (CH₃OH) λ_{max} (log ϵ) 213 (4.50), 281 (3.87) nm; IR (NaCl, film) v_{max} 3300, 1661, 1537, 1497, 1472, 1422, 1260, 993 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 2.68 (2H, t, J =7.3 Hz, H₂-7), 3.40 (2H, t, J = 7.3 Hz, H₂-8), 3.80 (3H, s, 1'-OCH₃), 3.82 (2H, s, H₂-7'), 6.79 (1H, d, J = 8.3 Hz, H-6), 6.97 (1H, dd, J = 2.0, 8.3 Hz, H-5), 7.30 (1H, d, J = 2.0 Hz, H-3), 7.47 (2H, s, H-3', H-5'); ¹³C NMR (125 MHz, CD₃OD) 28.8 (C-7'), 35.2 (C-7), 42.0 (C-8), 61.0 (1'-OCH₃), 110.7 (C-2), 118.6 (C-2', C-6'), 117.2 (C-6), 130.0 (C-5), 133.0 (C-4), 134.2 (C-3), 134.5 (C-3', C-5'), 137.4 (C-4'), 152.1 (C-8'), 153.8 (C-1'), 153.9 (C-1), 165.3 ppm (C-9'); EI mass spectrum m/z (rel int) [M⁺] 568 (2), 566 (6), 564 (7), 562 (2), 552 (2), 550 (7), 548 (8), 546 (2), 307 (30), 305 (61), 303 (30), 292 (14), 290 (25), 288 (13), 281 (10), 279 (17), 277 (9), 271 (7), 269 (23), 267 (10), 201 (15), 200 (96), 199 (18), 198 (100), 187 (44), 185 (48), 183 (17), 181 (15), 143 (18), 120 (18), 77 (17); HREIMS [M⁺] 567.8672 (C₁₈H₁₈⁸¹Br₃N₂O₄, calcd 567.8679), 565.8701 ($C_{18}H_{18}^{79}Br^{81}Br_2N_2O_4$, calcd 565.8699), 563.8715 ($C_{18}H_{18}^{79}Br_2^{81}BrN_2O_4$, calcd 563.8719), 561.8716 (C₁₈H₁₈⁷⁹Br₃N₂O₄, calcd 561.8739).

Hemibastadinol 1 (9): colorless solid; $[\alpha]^{23} - 31^{\circ}$ (c =1.83, CH₃OH); UV (CH₃OH) λ_{max} (log ϵ) 208 (4.43), 281 (3.69) nm; IR (NaCl, film) ν_{max} 3381, 1643, 1541, 1495, 1420, 1289 cm $^{-1};$ $^1\mathrm{H}$ NMR (400 MHz, CD_3OD) δ 2.57 $(2H, m, H_2-7)$, 2.72 (1H, dd, J = 7.2, 14.0 Hz, H-7a'), 2.90 (1H, dd, J = 4.0, 14.0 Hz, H-7b'), 3.26 (1H, m, H-8a), 3.38 (1H, m, H-8b), 4.13 (1H, dd, J = 4.0, 7.2, H-8'), 6.79 (2H, d, J = 8.3 Hz, H-6, H-6'), 6.92 (1H, dd, J = 1.9, 8.3 Hz, H-5), 7.02 (1H, dd, J = 1.9, 8.3 Hz, H-5'), 7.28 (1H, d, J = 1.9 Hz, H-3), 7.34 (1H, d, J = 1.9 Hz, H-3'); ¹H NMR (300 MHz, pyridine- d_5) δ 2.82 (2H, m, H₂-7), 3.18 (1H, dd, J = 7.8, 13.5 Hz, H-7a'), 3.47 (1H, dd, J = 3.5, 13.5 Hz, H-7b'), 3.69 (2H, m, H₂-8), 4.73 (1H, dd, J = 3.5, 7.8 Hz, H-8'), 7.08 (2H, br s, H-5, H-6), 7.12 (1H, d, J = 8.3 Hz, H-6'), 7.32 (1H, dd, J = 1.9, 8.3 Hz, H-5'), 7.56 (1H, obscured, H-3), 7.82 (1H, d, J = 1.9Hz, H-3'), 8.39 (1H, t, J = 5.6 Hz, NH-9); ¹³C NMR (100 MHz, CD₃OD) 35.4 (C-7), 40.6 (C-7'), 41.5 (C-8), 73.7 (C-8'), 110.4 (C-2'), 110.7 (C-2), 116.9 (C-6'), 117.3 (C-6), 130.0 (C-5), 131.0 (C-5'), 131.6 (C-4'), 133.0 (C-4), 134.2 (C-3), 135.2 (C-3'), 153.9 (C-1), 154.0 (C-1'), 176.2 ppm (C-9'); ¹³C NMR (125 MHz, pyridine-d₅) 35.2 (C-7), 40.6 (C-7'), 40.9 (C-8), 73.4 (C-8'), 110.7 (C-2'), 111.0

(C-2), 116.8 (C-6'), 117.2 (C-6), 129.4 (C-5), 130.6 (C-5'), 131.7 (C-4'), 132.2 (C-4), 133.8, (C-3), 134.8 (C-3'), 154.1 (C-1, C-1'), 174.3 ppm (C-9'); EI mass spectrum *m*/*z* (rel int) [M⁺] 461 (<1), 459 (0.3), 457 (<1), 443 (6), 441 (13), 439 (6), 244 (30), 242 (35), 241 (18), 227 (14), 225 (15), 201 (19), 200 (98), 199 (21), 198 (100), 187 (28), 185 (28), 120 (20), 107 (23), 77 (18); HREIMS [M⁺] 460.9477 (C₁₇H₁₇⁸¹Br₂NO₄ calcd 460.9494), 458.9483 (C₁₇H₁₇⁻⁷⁹Br⁸¹BrNO₄, calcd 458.9514), 456.9507 (C₁₇H₁₇⁷⁹Br₂-NO₄, calcd 456.9534).

Hemibastadinol 2 (13) and Hemibastadinol 3 (14). Mixture: $[\alpha]^{23}_D - 24^\circ$ (c = 0.10, CH₃OH); IR (NaCl, film) v_{max} 3381, 1643, 1539, 1478, 1279 cm⁻¹; EI mass spectrum m/z (rel int) [M⁺] 541 (<1), 539 (<1), 537 (<1), 535 (<1), $[M^+ - H_2O]$ 523 (2), 521 (7), 519 (6), 517 (2), 244 (9), 242 (10), 201 (15), 200 (100), 199 (16), 198 (100), 187 (16), 185 (17), 120 (20), 77 (13); HREIMS [M⁺] 540.8558 (C₁₇H₁₆⁸¹Br₃NO₄ calcd 540.8572), 538.8586 (C177H1679Br81Br2NO4, calcd 538.8593), 536.8631 (C17H16⁷⁹Br2⁸¹BrNO4, calcd 536.8612), 534.8605 (C17H16-⁷⁹Br₃NO₄, calcd 534.8633), $[M^+ - H_2O]$ 522.8446 (C₁₇H₁₄-⁸¹Br₃NO₃, calcd 522.8464), 520.8471 (C₁₇H₁₄⁷⁹Br⁸¹Br₂-NO₃, calcd 520.8484), 518.8497 (C₁₇H₁₄⁷⁹Br₂⁸¹BrNO₃, calcd 518.8504), 516.8509 ($C_{17}H_{14}^{79}Br_3NO_3$, calcd 516.8524). (8'S)-Hemibastadinol 2 (13): ¹H NMR (500 MHz, CD₃OD) δ 2.53 (1H, ddd, J = 7.0, 8.0, 14.0 Hz, H-7a), 2.60 (1H, ddd, J = 6.5, 8.5, 14.0 Hz, H-7b), 2.75 (1H, dd, J = 4.0, 14.0 Hz, H-7a'), 2.88 (1H, dd, J = 7.0, 14.0 Hz, H-7b'), 3.23 (1H, ddd, J = 6.5, 8.0, 15.0 Hz, H-8a), 3.40 (1H, ddd, J = 7.0, 8.5, 15.0 Hz, H-8b), 4.14 (1H, dd, J = 4.0, 7.0, H-8'), 6.80 (1H, d, J = 8.0 Hz)H-6), 6.92 (1H, dd, J = 2.0, 8.0 Hz, H-5), 7.28 (1H, d, J = 2.0 Hz, H-3), 7.34 (2H, s, H-3', H-5'); ¹³C NMR (125 MHz, CD₃OD) 35.5 (C-7), 41.5 (C-7', C-8), 73.3 (C-8'), 110.7 (C-2), 111.8 (C-2', C-6'), 117.3 (C-6), 129.9 (C-5), 132.9 (C-4'), 133.1 (C-4), 134.2 (C-3), 134.6 (C-3', C-5'), 150.9 (C-1'), 153.8 (C-1), 175.8 ppm (C-9'). (8'S)-Hemibastadinol 3 (14): ¹H NMR (500 MHz, CD₃OD) δ 6.80 (1H, d, J = 8.0 Hz, H-6'), 7.02 (1H, dd, J = 2.0, 8.0 Hz, H-5'), 7.31 (2H, s, H-3, H-5), 7.34 (1H, d, J = 2.0 Hz, H-3'); ¹³C NMR (125 MHz, CD₃OD) 35.1 (C-7), 40.6 (C-7'), 41.2 (C-8), 73.7 (C-8'), 110.4 (C-2'), 112.2 (C-2, C-6), 116.9 (C-6'), 130.9 (C-5'), 131.6 (C-4'), 131.9 (C-4), 133.6 (C-3, C-5), 135.2 (C-3'), 150.8 (C-1), 153.9 (C-1'), 176.2 ppm (C-9').

1.1'.8'(S)-Trimethoxyhemibastadin 1 (6a). A mixture of hemibastadin 1 (2, 2.6 mg), K₂CO₃ (15 mg), and methyl iodide (0.25 mL) in dry DMF (1 mL) was stirred at room temperature for 40 h. The reaction mixture was poured into water (20 mL) and extracted with Et_2O (2) \times 25 mL). The combined ethereal extract was washed with water (2×25 mL), and dried (sodium sulfate) and solvent removed in vacuo to give methyl ether 6a as a colorless solid (1.8 mg, 64%): ¹H NMR (300 MHz, CDCl₃) δ 2.75 (2H, t, J = 6.9 Hz, H₂-7), 3.49 (2H, dt, J = 6.9, 6.9 Hz, H₂-8), 3.81 (2H, s, H₂-7'), 3.85, 3.87, 3.98 $(3 \times 3H, 3s, 1 - OCH_3, 1' - OCH_3, 8' - NOCH_3), 6.79$ (1H, br t, J = 6.9 Hz, NH-9), 6.79 (1H, d, J = 8.5 Hz, H-6'), 6.82 (1H, d, J = 8.5 Hz, H-6), 7.06 (1H, dd, J = 2.1, 8.5 Hz, H-5), 7.20 (1H, dd, J = 2.1, 8.5 Hz, H-5'), 7.37 (1H, d, J = 2.1 Hz, H-3), 7.46 (1H, d, J = 2.1 Hz, H-3'), identical (by ¹H-NMR) to that previously reported.¹²

1,1',8'(S)-Trimethoxyhemibastadin 2 (5) and 1,1',8'(S)-Trimethoxyhemibastadin 3 (6b). Methylation of hemibastadins 2 (3) and 3 (4) (total 5.0 mg) in dry DMF (1 mL) was conducted with methyl iodide (0.5 mL) and K_2CO_3 (25 mg) as noted above (cf.) to give a mixture of ethers of 5 and 6b as a colorless solid (total 3.6 mg, 71%). 1,1',8'(S)-Trimethoxyhemibastadin 2 (5): ¹H NMR (300 MHz, CDCl₃) δ 2.76 (2H, t, J = 7.0Hz, H₂-7), 3.49 (2H, dt, J = 7.0, 7.0 Hz, H₂-8), 3.82 (2H, s, H_2 -7'), 3.85, 3.86, 3.99 (3 × 3H, 3s, 1-OCH₃, 1'-OCH₃, 8'-NOCH₃), 6.76 (1H, br t, J = 7.0 Hz, NH-9), 6.79 (1H, d, J = 8.4 Hz, H-6), 7.20 (1H, dd, J = 2.0, 8.4 Hz, H-5), 7.33 (2H, s, H-3', H-5'), 7.47 (1H, d, J = 2.0 Hz, H-3), identical (by ¹H-NMR) to that previously reported.¹² 1,1',8'(S)-Trimethoxyhemibastadin 3 (6b): ¹H NMR (300 MHz, CDCl₃) δ 2.76 (2H, t, J = 7.0 Hz, H₂-7), 3.51 (2H, dt, J = 7.0, 7.0 Hz, H₂-8), 3.81 (2H, s, H₂-7'), 3.84, 3.87, 3.99 (3 × 3H, 3s, 1-OCH₃, 1'-OCH₃, 8'-NOCH₃), 6.76 (1H, br t, J = 7.0 Hz, NH-9), 6.83 (1H, d, J = 8.4 Hz, H-6'), 7.08 (1H, dd, J = 2.2, 8.4 Hz, H-5'), 7.38 (1H, d, J = 2.2 Hz, H-3'), 7.42 (2H, s, H-3, H-5).

1,1'-Dimethoxy-8'(S)-hemibastadinol 1 (10). Freshly distilled ethereal diazomethane (1 mL) was added to a solution of hemibastadinol 1 (9) in methanolethyl ether (1:3, 2 mL). After being stirred for 30 min at 0-5 °C, the solution was warmed to room temperature in a gentle stream of argon to remove the excess diazomethane. Solvent was removed in vacuo to give ether **10** as a colorless solid (6.8 mg, 100%): $[\alpha]^{27}_{D} - 23^{\circ}$ $(c = 0.66, CH_3OH); UV (CH_3OH) \lambda_{max} (\log \epsilon) 208 (4.45),$ 281 (3.60) nm; IR (NaCl, film) ν_{max} 3387, 1651, 1497, 1279, 1256, 1057 cm⁻¹; ¹H NMR (300 MHz, CD₃OD) δ 2.60 (2H, m, H₂-7), 2.77 (1H, dd, J = 6.9, 14.0 Hz, H-7a'), 2.93 (1H, dd, J = 4.1, 14.0 Hz, H-7b'), 3.25 (1H, ddd, J = 7.4, 7.4, 15.0 Hz, H-8a), 3.41 (1H, ddd, J = 6.5, 7.9, 13.3 Hz, H-8b), 3.82 (3H, s, 1-OCH₃), 3.83 (3H, s, 1'- OCH_3 , 4.15 (1H, dd, J = 4.1, 6.9 Hz, H-8'), 6.92 (2H, d, J = 8.4 Hz, H-6, H-6'), 7.04 (1H, dd, J = 2.1, 8.4 Hz, H-5), 7.15 (1H, dd, J = 2.1, 8.4 Hz, H-5'), 7.35 (1H, d, J = 2.1 Hz, H-3), 7.42 (1H, d, J = 2.1 Hz, H-3'); HR-FABMS [M + H], 485.9897 (C₁₉H₂₂⁷⁹Br₂NO₄, calcd 485.9915).

1,1'-Dimethoxy-8'(S)-[α(S)-methoxyphenylacetyl]hemibastadinol 1 (11). A mixture of 1,1'-dimethoxyhemibastadinol 1 (10) (6.5 mg), 4-(dimethylamino)pyridine (6 mg), 1,3-dicyclohexylcarbodiimide (8 mg), and α (*S*)-methoxyphenylacetic acid (7.5 mg) in dry CH₂-Cl₂ (0.75 mL) was stirred under argon for 4 h. The solution was filtered and concentrated to dryness and the residue dissolved in CH₂Cl₂. The solution was chromatographed on a silica gel column (Pasteur pipette) and eluted with CH₂Cl₂ (5 mL) followed by 97:3 CH_2Cl_2 -MeOH (5 mL). Ester **11** contaminated with 1,3-dicyclohexylurea was eluted by the latter solvent. Normal-phase HPLC (1:1 hexane/EtOAc) led to a pure specimen of ester **11** as a colorless solid (5.1 mg; 60%): $[\alpha]^{26}_{D}$ +13° (c = 0.51, CH₃OH); IR (NaCl, film) ν_{max} 3422, 2927, 2853, 1759, 1682, 1499, 1258 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) δ 2.31 (1H, m, H-7a), 2.39 (1H, m, H-7b), 2.87 (1H, m, H-8a), 3.04 (1H, dd, J = 6.0, 14.5 Hz, H-7a'), 3.10 (1H, dd, J = 4.5, 14.5 Hz, H-7b'), 3.29 (1H, m, H-8b), 3.33 (3H, s, 2"-OCH₃), 3.87 (3H, s, 1'-OCH₃), 3.89 (3H, s, 1-OCH₃), 4.72 (1H, s, H-2"), 5.23 (1H, br t, J = 7.0 Hz, NH-9), 5.41 (1H, dd, J = 4.5, 6.0 Hz, H-8'), 6.76 (1H, dd, J = 2.0, 8.5 Hz, H-5), 6.78 (1H, d, J = 8.5Hz, H-6'), 6.81 (1H, d, J = 8.5 Hz, H-6), 7.02 (1H, dd, J = 2.0, 8.5 Hz, H-5'), 7.10 (1H, d, J = 2.0 Hz, H-3), 7.30

1,1'-Dimethoxy-8'(S)-[α(R)-methoxyphenylacetyl]hemibastadinol 1 (12). A mixture of 1,1'-dimethoxyhemibastadinol 1 (10) (3.3 mg), DMAP (8 mg), DCCI (7 mg), and $\alpha(R)$ -methoxyphenylacetic acid (5.0 mg) in dry CH₂Cl₂ (0.75 mL) was allowed to react and the product isolated as outlined above (see the procedure for 11). Ester 12 was obtained as a colorless solid (3.0 mg, 70%): $[\alpha]^{26}_{D}$ -5.0° (c = 0.3, CH₃OH); IR (NaCl, film) ν_{max} 3320, 2926, 2851, 1755, 1667, 1499, 1258 cm⁻¹; ¹H NMR (500 MHz, CD₃OD) & 2.44 (1H, m, H-7a), 2.52 (1H, m, H-7b), 3.00 (2H, m, H-7a', H-7b'), 3.12 (1H, m, H-8a), 3.34 (3H, s, 2"-OCH₃), 3.38 (1H, m, H-8b), 3.85 (3H, s, 1'-OCH₃), 3.89 (3H, s, 1-OCH₃), 4.72 (1H, s, H-2"), 5.36 (1H, dd, J = 5.5, 5.5 Hz, H-8'), 5.55 (1H, br t, J = 7.0Hz, NH-9), 6.66 (1H, d, J = 8.5 Hz, H-6'), 6.82 (3H, m, H-5, H-6, H-5'), 7.22 (1H, d, J = 2.0 Hz, H-3), 7.26 (1H, d, J = 2.0 Hz, H-3'), 7.34 (5H, m, 2"-Ph); HRFABMS [M⁺], 634.0436 (C₂₈H₃₀⁷⁹Br₂NO₆, calcd 634.0439).

1,1'-Dimethoxy-8'(S)-hemibastadinol 2 (15) and 1,1'-Dimethoxy-8'(S)-hemibastadinol 3 (16). A mixture of hemibastadinol 2 (13) and hemibastadinol 3 (14) weighing 7.1 mg was methylated with ethereal diazomethane (cf. the procedure for 10) to give methyl ether derivatives 15 and 16 as a colorless solid (7.3 mg, 100%): IR (NaCl, film) v_{max} 3393, 2930, 1651, 1537, 1497, 1472, 1258 cm⁻¹; HRFABMS [M + H], 563.9019 (C₁₉H₂₀⁷⁹Br₃NO₄, calcd 563.9020). 1,1'-Dimethoxy-8'-(S)-hemibastadinol 2 (15): ¹H NMR (300 MHz, CD₃OD) δ 2.59 (2H, m, H₂-7), 2.80 (1H, dd, J = 6.8, 14.0 Hz, H-7a'), 2.93 (1H, dd, J = 4.1, 14.0 Hz, H-7b'), 3.24 (1H, ddd, J = 6.9, 8.0, 14.6 Hz, H-8a), 3.42 (1H, ddd, J =6.3, 8.3, 14.6 Hz, H-8b), 3.80 (3H, s, 1-OCH₃), 3.83 (3H, s. 1'-OCH₃), 4.17 (1H, dd, J = 4.1, 6.8, H-8'), 6.92 (1H, d, J = 8.3 Hz, H-6'), 7.05 (1H, dd, J = 2.0, 8.3 Hz, H-5'), 7.36 (1H, d, J = 2.0 Hz, H-3'), 7.45 (2H, s, H-3', H-5'). 1,1'-Dimethoxy-8'(S)-hemibastadinol 3 (16): ¹H NMR (300 MHz, CD₃OD) & 2.59 (2H, m, H₂-7), 2.80 (1H, dd, J = 6.8, 14.0 Hz, H-7a'), 2.93 (1H, dd, J = 4.1, 14.0 Hz, H-7b'), 3.24 (1H, ddd, J = 6.9, 8.0, 14.6 Hz, H-8a), 3.42(1H, ddd, J = 6.3, 8.3, 14.6 Hz, H-8b), 3.82 (3H, s, 1'-OCH₃), 3.83 (3H, s, 1-OCH₃), 4.14 (1H, dd, J = 4.1, 6.8 Hz, H-8'), 6.92 (1H, d, J = 8.3 Hz, H-6'), 7.16 (1H, dd, J = 2.0, 8.3 Hz, H-5'), 7.40 (2H, s, H-3, H-5), 7.42 (1H, d. J = 2.0 Hz. H-3').

1,1'-Dimethoxy-8'(S)-[α(S)-methoxyphenylacetyl]hemibastadinol 2 (17) and 1,1-Dimethoxy-8'(S)-[α-(S)-methoxyphenylacetyl]hemibastadinol 3 (18). A mixture of 1,1'-dimethoxyhemibastadinols 2 (15) and 3 (16) (total 4.7 mg), DMAP (8 mg), DCCI (8 mg), and α -(S)-MPA (6.0 mg) in dry methylene chloride (0.75 mL) was employed and product isolated as summarized for ester 11 to yield a mixture of esters 17 and 18 as a colorless solid (total 3.0 mg, 60%). Mixture: IR (NaCl, film) $\nu_{\rm max}$ 3420, 2928, 2855, 1759, 1682, 1499, 1472, 1258 cm⁻¹; HRFABMS [M + H], 711.9560 (C₂₈H₂₉⁷⁹Br₃NO₆, calcd 711.9545). 1,1'-Dimethoxy-8'(S)- $[\alpha(S)$ -methoxyphenylacetyl]hemibastadinol 2 (17): ¹H NMR (500 MHz, CD₃OD) δ 2.28 (1H, m, H-7a), 2.42 (1H, m, H-7b), 2.85 (1H, m, H-8a), 3.06 (2H, m, H-7a', H-7b'), 3.31 (1H, m, H-8b), 3.37 (3H, s, 2"-OCH₃), 3.86 (3H, s, 1'-OCH₃), 3.89 (3H, s, 1-OCH₃), 4.73 (1H, s, H-2"), 5.23 (1H, br t, J = 7.0 Hz, NH-9), 5.41 (1H, dd, J = 5.2, 5.2 Hz, H-8'), 6.79 (1H, dd, J = 1.8, 8.3 Hz, H-5), 6.82 (1H, d, J = 8.3 Hz, H-6), 7.14 (1H, d, J = 1.8 Hz, H-3), 7.31 (5H, m, 2"-Ph), 7.32 (2H, s, H-3', H-5'). 1,1'-Dimethoxy-8'(*S*)-[α (*S*)-methoxyphenylacetyl]hemibastadinol 3 (**18**): ¹H NMR (500 MHz, CD₃OD) δ 6.79 (1H, d, J = 8.3 Hz, H-6'), 7.09 (2H, s, H-3, H-5), 7.20 (1H, dd, J = 2.1, 8.3 Hz, H-5'), 7.36 (1H, J = 2.1 Hz, H-3').

1,1'-Dimethoxy-8'(S)-[α(R)-methoxyphenylacetyl]hemibastadinol 2 (19) and 1,1'-Dimethoxy-8'(S)- $[\alpha(\mathbf{R})$ -methoxyphenylacetyl]hemibastadinol 3 (20). A mixture of 1.1'-dimethoxyhemibastadinol 2 (15) and 3 (16) (total 3.6 mg), DMAP (6 mg), DCCI (8 mg), and $\alpha(R)$ -MPA (4.3 mg) in dry CH₂Cl₂ (0.75 mL) provided (refer to ester 12) a mixture of esters 19 and 20 as a colorless solid (total 3.0 mg, 66%): IR (NaCl, film) ν_{max} 3412, 2928, 2855, 1755, 1667, 1499, 1472, 1258 cm⁻¹; HRFABMS [M + H], 711.9560 (C₂₈H₂₉⁷⁹Br₃NO₆, calcd 711.9545). 1,1'-Dimethoxy-8'(S)- $[\alpha(R)$ -methoxyphenylacetyl]hemibastadinol 2 (19): 1H NMR (500 MHz, CD₃OD) & 2.40 (1H, m, H-7a), 2.53 (1H, m, H-7b), 2.94 (1H, dd, J = 4.5, 14.5 Hz, H-7a'), 3.04 (1H, dd, J = 6.3)14.5 Hz, H-7b'), 3.09 (1H, m, H-8a), 3.35 (3H, s, 2"-OCH₃), 3.40 (1H, m, H-8b), 3.84 (3H, s, 1'-OCH₃), 3.89 $(3H, s, 1-OCH_3), 4.74 (1H, s, H-2''), 5.37 (1H, dd, J =$ 4.5, 6.3 Hz, H-8'), 5.54 (1H, br t, J = 7.0 Hz, NH-9). 6.83 (2H, m, H-5, H-6), 7.22 (2H, s, H-3', H-5'), 7.22 (1H, d, J = 2.1 Hz, H-3), 7.34 (5H, m, 2"-Ph). 1,1'-Dimethoxy-8'(S)- $[\alpha(R)$ -methoxyphenylacetyl]hemibastadinol 3 (20): ¹H NMR (500 MHz, CD₃OD) δ 6.68 (1H, d, J = 8.3 Hz, H-6'), 6.81 (1H, dd, J = 2.1, 8.3 Hz, H-5'), 7.17 (2H, s, H-3, H-5), 7.28 (1H, d, J = 2.0 Hz, H-3').

Antimicrobial Susceptibility Testing. Antimicrobial disk susceptibility tests were performed according to the methods established by the National Committee for Clinical Laboratory Standards.²⁶ Mueller-Hinton agar was used for susceptibility testing of *S. aureus* (ATCC #29213), *E. faecalis* (ATCC #29212), and *E. coli* (ATCC #25922), Gonococcal Typing agar was used for *N. gonorrhoeae* (ATCC #49226) and YM agar for *C. albicans* (ATCC #90028) and *C. neoformans* (ATCC #90112). Compounds were reconstituted in sterile DMSO, and 2-fold dilutions applied to sterile 6-mm disks. Zones of inhibition were recorded after 16 h for bacterial cultures, and 42 h for fungal cultures. Results are the average of two experiments.

Acknowledgment. For financial support we are pleased to acknowledge Outstanding Investigator Grant CA44344-01-07 awarded by the Division of Cancer Treatment, U.S. National Cancer Institute, DHHS, the Fannie E. Rippel Foundation, the Arizona Disease Control Research Commission, the Robert B. Dalton Endowment Fund, Virginia Piper, Gary L. Tooker, Eleanor W. Libby, and Polly Trautman. For other valuable assistance we are pleased to thank the Government of Papua New Guinea (Dr. John L. Monro, Andrew Richards, Navu Kwapena, and David Coates), Dr. Robert J. Capon for the spectra of hemibastadins 1 and 2, Drs. Raymond J. Anderson, Paul J. Scheuer, and Frances J. Schmitz for authentic samples of various bastadins, Drs. Michael R. Boyd, Charles Chapuis, and Cherry L. Herald, and Fiona Hogan, Mr. Larry P. Tackett, Ms. Denise Nielsen-Tackett, Mr. David M. Carnell, and Mr. Lee Williams, the U.S. National Science Foundation (Grant Nos. BBS 88-04992 and CHE-8409644), and the NSF Regional Instrumentation Facility in Nebraska (Grant CHE-8620177).

References and Notes

- Antineoplastic Agents. 331. Part 330: Pettit, G. R.; Ichihara, Y.; Wurzel, G.; Williams, M. D.; Schmidt, J. M.; Chapuis, J.-C. J. Chem. Soc., Chem. Commun. 1995, 383–385.
- (2) Butler, A.; Walker, J. V. Chem. Rev. 1993, 93, 1937-1944.
- (3) Pettit, G. R.; Hogan-Pierson, F.; Herald, C. L. Anticancer Drugs from Animals, Plants, and Microorganisms; Wiley-Intersience: New York, 1994.
- (4) Pettit, G. R.; Herald, C. L.; Smith, C. R. Biosynthetic Products for Cancer Chemotherapy, Elsevier: Amsterdam, 1989, Vol. 6.
- (5) Albrizio, S.; Ciminiello, P.; Fattorusso, E.; Magno, S.; Pansini, M. Tetrahedron **1994**, *50*, 783–788.
- (6) Jaspars, M.; Rali, T.; Laney, M.; Schatzman, R. C.; Diaz, M. C.; Schmitz, F. J.; Pordesimo, E. O.; Crews, P. *Tetrahedron* 1994, 25, 7367–7374.
- (7) Park, S. K.; Jurek, J.; Carney, J. R.; Scheuer, P. J. J. Nat. Prod. 1994, 57, 407–410.
- (8) Yagi, H.; Matsunaga, S.; Fusetani, N. Tetrahedron 1993, 49, 3749-3754.
- (9) Gulavita, N. K.; Wright, A. E.; McCarthy, P. J.; Pomponi, S. A.; Kelly-Borges, M.; Chin, M.; Sills, M. A. J. Nat. Prod. 1993, 56, 1613–1617.
- (10) Dexter, A. F.; Garson, M. J.; Hemling, M. E. J. Nat. Prod. 1993, 56, 782-786.
- (11) Carney, J. R.; Scheuer, P. J.; Kelly-Borges, M. J. Nat. Prod. 1993, 56, 153–157.
- (12) Butler, M. S.; Lim, T. K.; Capon, R. J.; Hammond, L. S. Aust. J. Chem. 1991, 44, 287–296.
- (13) Miao, S.; Andersen, R. J.; Allen, T. M. *J. Nat. Prod.* **1990**, *53*, 1441–1446.
- (14) Pordesimo, E. O.; Schmitz, F. J. J. Org. Chem. 1990, 55, 4704– 4709.

- (15) Ireland, C. M.; Molinski, T. F.; Roll, D. M.; Zabriskie, T. M.; McKee, T. C.; Swersey, J. C.; Foster, M. P. *Bioorganic Marine Chemistry 3*; Springer-Verlag: Heidelberg, 1988.
- (16) Xynas, R.; Capon, R. J. Aust. J. Chem. 1989, 42, 1427-1433.
- (17) Carney, J. R.; Rinehart, K. L. J. Nat. Prod. **1995**, *58*, 971–985.
- (18) Arabshahi, L.; Schmitz, F. J. *J. Org. Chem.* **1987**, *52*, 3584–3586.
- (19) Rudi, A.; Goldberg, I.; Stein, Z.; Frolow, F.; Benayahu, Y.; Schleyer, M.; Kashman, Y. J. Org. Chem. **1994**, *59*, 999–1003.
- (20) McDonald, L. A.; Swersey, J. C.; Ireland, C. M.; Carroll, A. R.; Coll, J. C.; Bowden, B. F.; Fairchild, C. R.; Cornell, L. *Tetrahedron* 1995, *18*, 5237–5244.
- (21) Pettit, G. R.; Butler, M. S.; Bass, C. G.; Doubek, D. L.; Williams, M. D.; Schmidt, J. M.; Pettit, R. K.; Hooper, J. N. A.; Tackett, L. P.; Filiatrault, M. J. *J. Nat. Prod.* **1995**, *58*, 680–688.
- (22) Trost, B. M.; Belletire, J. L.; Godleski, S.; McDougal, P. G.; Balkovec, J. M.; Baldwin, J. J.; Christy, M. E.; Ponticello, G. S.; Varga, S. L.; Springer, J. P. *J. Org. Chem.* **1986**, *51*, 2370–2374.
- (23) Pehk, T.; Lippmaa, E.; Lopp, M.; Paju, A.; Borer, B. C.; Taylor, R. J. K. *Tetrahedron Assymmetry* **1993**, *4*, 1527–1532.
- (24) Dumdei, E.; Andersen, R. J. J. Nat. Prod. 1993, 56, 792-794.
- (25) Kazlauskas, R.; Lidgard, R. O.; Murphy, P. T.; Wells, R. J.; Blount, J. Aust. J. Chem. 1981, 34, 765-786.
- (26) National Committee for Clinical Laboratory Standards, 1990. Approved standard M2-A4. Performance standards for antimicrobic disk susceptibility tests. National Committee for Clinical Laboratory Standards, Villanova, PA.

NP960249N